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ABSTRACT 

A new method of Template matching is proposed using graphical templates. A 

graph of landmarks is chosen in the template image. All possible candidates for these 

landmarks are found in the data image using robust relational local operators. A 

dynamic programming algorithm on decomposable subgraphs of the template graph 

finds the optimal match to a subset of the candidate points in polynomial time. This 

combination of local operators to describe points of interest /landmarks and a graph 

to describe their geometric orientation in the plane, yields fast and precise matches 

of the model to the data, with no initialization required. In addition it provides a 

generic toolbox for modeling shape in a variety of applications. This methodology 

is applied in the context of T2 weighted MR images of the brain. 
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§1   Introduction 

The main premise of this paper is that recognition and registration can be 

achieved through graphical models describing the global planar arrangement of local 

image features or landmarks. The local features are defined through very robust 

and crude local operators describing local pixel intensity topographies. They are 

not meant to identify any complex components with great accuracy. It is the planar 

configuration of these features, described in terms of a graph, which singles the true 

positives from the many false positives which light up for these operators. 

Model registration is achieved by creating a graph (manually at this point) of 

triangles describing the global arrangement of the features, and then using dynamic 

programming on decomposable subgraphs to find the optimal match to the large 

collection of feature candidates which light up in the image. These methods are 

applied to continuously varying objects appearing in medical imaging. In this paper 

we present the specific case of MRI brain scans. In Amit and Kong (1993) the 

method was applied to hand xrays. 

Using similar ingredients in Amit and Geman (1994) we describe an object 

recognition algorithm, implemented in the context of handwritten character recog- 

nition. Decision trees are grown, where the questions at the nodes involve incre- 

menting graphs of binary relations between landmarks. The binary relations involve 

the relative orientation of the two landmarks. At each node in the tree more com- 

plex and informative questions are constructed using questions from previous nodes 

which were answered in the affirmative. The terminal nodes of these trees may in 

the future provide graphical shape models for the corresponding classes. 

The problem of model registration in medical imaging is becoming of growing 

interest. First it provides an automatic means of identifying the various components 
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of the object in the image (figure 5). and in some cases of segmenting the image. 

Secondly it provides a means of studying the variability in the family, classifying 

subgroups and identifying abnormalities. Thirdly it can provide a means for coding 

or data compression. It is also related to issues of data fusion. 

The most extensively studied models come under the general title of elastic 

matchine. 

Elastic matching versus landmark matching 

Grenander (1970) introduced the idea of elastic deformations of one and two 

dimensional templates. These ideas were implemented in a Bayesian framework 

using spectral representations of the planar maps in Amit et. al. (1991) for hand 

xrays and in Miller et al. (1993) for MRI images of the brain. Similar ideas were 

proposed by Bajcsy and Kovacic (1989) for MRI brain images, using techniques 

developed in the optical flow and image sequence analysis literature. Horn and 

Schunck (1980), Huang and Tsai (1981) and Nagel (1983), Terzopoulos (1988). 

A comparison of these methods both from the point of view of the optimization 

problem being posed and the numerical techniques can be found in Amit (1994). 

One dimensional elastic models have also been extensively studied see Grenander 

et al (1991). and Kass et. al. (1987). 

There are several limitations to these elastic models. First the matching cri- 

terion seeks to minimize the mean square over all pixels of the difference between 

the intensity of the deformed template and that of the data image. On one hand 

this is a very well defined criterion however it does not ensure that specific points 

of interest or landmarks be matched with great precision. This later criterion is 

very precisely defined for the human eye but very hard to formulate in mathemat- 



ical terms, second the deformations being used are generic or non-parametric in 

nature and do not depend on the specific family of objects. Third, because of the 

inherent non-linearity of the problem, and the fact that the deformations are high 

dimensional, the computational tools for calculating the match must use relaxation 

techniques which run the risk of converging to a local minimum which corresponds 

to a poor match. This is a serious problem in the one dimensional elastic algorithms. 

These :ssues point to three categories which must be addressed simultaneously 

and in an integrated manner in any approach to the template matching problem. 

The data term which drives the matching. The model and its variability. The 

computational tools and their limitations. 

The principal tool in the method described here is a graphical model of land- 

mark points which describes their planar arrangement, together with local operators 

which identify candidates for the various landmarks in the data image. This is es- 

sentially a new approach to the general program outlined in Haralick and Shapiro 

(1993, 16.1.2). Namely image features are defined and then correspondence is ob- 

tained through a consistency model, which is optimized through an efficient al- 

gorithm consisting of dynamic programming on decomposable subgraphs of the 

original model. 

Thus more emphasis is put on the precise matching of landmarks, see Bookstein 

(1991), local features or points of interest (see Haralick and Shapiro (1993) ). These 

landmarks are both important for understanding and analyzing the image and can 

be identified using various local operators which employ more information than 

individual pixel intensity. Moreover modeling the variability in terms of the relative 

locations o: the landmarks yields a more specific and lower dimensional description 

of the variability within a certain family of objects. 
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From graph matching to planar maps: Once the graph has been matched to 

rhe data it is possible to create a vlanar map through interpolation as in Bookstein 

'1991). Furthermore this interpolated map can serve as an initial point for the 

elastic matching algorithms where the correct match of the landmarks is ensured. 

From graph matching to component identification: Given the location of vari- 

ous components of interest relative to the landmarks, these can be automatically 

identified once the graph has been matched. For example the various anatomies 

present in the T2 weighted MRI brain scan in figure 5 were identified automatically 

using the match displayed in figure 4. 

Ultimately, for each specific anatomy or image family we will have a graph 

which will be automatically matched to any incoming data image, yielding an au- 

tomatic identification of the various components. This method can be thought of 

as a generic toolbox for modeling shape. 

In section 2 some of the details of the graph matching algorithm are described 

together with some of the experiments. 

§2   The graph matching algorithm 

A template image is chosen from the family for the construction of the local 

operators and graphical model. For the purpose of obtaining planar maps and image 

compression this template image is considered as part of the model, together with 

the graph of landmarks. 

2.1   The local operators 

A collection of landmarks is chosen in the template image (figure 1) and a 

local operator is chosen for each landmark. The local operators are designed to be 
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robust, and hence crude, descriptions of the local topography of the pixel intensity 

function in the neighborhood of the landmark. 

A certain size neighborhood is chosen, say mxn, together with an array L of 1- 

s. -1-s and 0-s of those dimensions. The sign of the difference between the intensity 

at a given pixel i, j, and the intensity at each of the pixels in its m x n neighborhood 

is calculated, to yield an array A^ of 1-s and -1-s, at pixel i,j. If the percentage 

of matched 1-s and -1-s between L and A^-]) is above a prescribed threshold the 

pixel is considered a candidate for the corresponding landmark. The 0-s region in L 

represents a region where the results of the A{'-j) are ignored. The simplest example 

is L\ ail 1-s. and L-\ all 0-s. This corresponds to a local maximum operator. The 

reverse corresponds to a local minimum operator. The pixels corresponding to a 

certain local operator typically occur in clusters. These were identified and the 

average location calculated. 

In the experiments described below on MRI brain scans the operators for the 

eight landmarks were obtained by pointing to the eight points in the template 

image, extracting an 11 x 11 neighborhood and calculating the matrix of signs of 

differences with respect to the middle pixel. Below is an example of the operator 

used to identify candidates for landmark no. 1 in figure 1. 

/1 1 1 1 1 1 1 1 1 1 1 \ 
1 1 1 1 1 1 1 1 1 1 1 

-1 -1 -1 1 1 1 1 1 1 -1 -1 
-1 -1 -1 -1 1 1 1 1 -1 -1 -1 
-1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 
-1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

\-l -1 -1 -1 -1 -1 -1 -1 -1 -1 -1/ 
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The left panei in figure 2 displays as circles the candidates for this operator 

using a threshold of .75 The right panel displays the outcome with a threshold 

of .8. False negatives are to be avoided at all costs because then there will not 

be a match in the image for a specific landmark. This is done by lowering the 

thresholds and increasing the number of false positives. Dealing with these is the 

role of the graphical model, which provides constraints on the planar arrangement 

of the landmarks. Of course too many false positives will lead to erroneous matches. 

2.2   Decomposable graphs for matching 

In figure 1 the eight landmarks chosen in an MRI scan of the brain are displayed. 

The landmarks and the graph in the template image 

FIGURE 1. 

Typically the same local operator will be used for several landmarks, and 
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more candidates will be found in the data image, than landmarks associated with 

that operator in the model, see figure 2. 

Candidates for the first 4 landmarks found in the data. 1  —  o, 2 
Left panel: threshold of .75. Right panel: threshold of .8 

FIGURE 2. 

 h,3  -  *,4   -  x. 

To find the correct match of the landmarks in the model to the candidate 

pixels in the image it is necessary to introduce constraints on the relative locations 

of the landmarks in the plane. This can be done by defining a collection of triangles 

between triples of landmarks identified on the template image. At present this is 

done manually by the user. See figure 1. A cost function is associated with each 

such triangie which penalizes its shape deviation from the corresponding triangle in 

the template image. The total cost function is the sum of the cost functions over 

all the triangles in the model. The collection of triangles can also be expressed as 

a colored graph, where the nodes are the landmarks, the color or type of a node is 
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given by the type of local operator used to find its candidates. The edges in the 

graph exist between each two landmarks which belong to a triangle. This graph is 

called the template graph. In this context the deformable template is not an image 

but a graph model. It is important to note that these constraints need not be local. 

indeed they could involve far apart landmarks. This is in contrast to the implicit 

constraints used in the elasticity models which essentially penalize large changes in 

the local lattice elements. 

Finding the optimal match then reduces to an inexact consistent-labeling prob- 

lem, (see Haralick and Shapiro (1993. Chapter 17), which is generically exponential 

in complexity. However if the template graph is chosen so as to be decomposable, 

it is possible to find the optimal match in polynomial time using dynamic program- 

ming on the graph, see for example Rose et. al. (1976). Decomposability in the 

present context means that there exists an order in which the triangles of the graph 

can be successively eliminated, such that each triangle in its turn has a free vertex 

contained in no other triangle. When the free vertex and the two edges emanating 

from it are removed, one of the vertices of the next triangle in the order is freed 

and so on. 

Dynamic programming on the graph 

The graph displayed in figure 1 is decomposable, and the order of elimination 

coincides with the index number of the landmark type. Let vz.i = 1 8 de- 

note the vertices in the graph. I, the corresponding local operator, and dQ denote 

candidate points found in a data image. For each triangle i.j,k in the graph let 

<t>ijk(dai,dQ:. dak) denote the cost incurred by matching u,- to dQ{, VJ to da. and vk 

to dak.  Obviously da. was identified with the operator L, etc.  The cost of a full 
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match is simply 

(i,j,fe)eC 

where C is the collection of triangles in the graph. 

Dynamic programming in this context is implemented as follows.   For each 

possible match da2,das for vertices «2,^3 find the point dai which minimizes 

<Pi23(dai,da7,da3), 

call the minimizing index 01(02,03) and the associated cost 0123(0:2,0:3). Store 

these two for each pair (0.2,0:3). Now for each possible match daa,dQA find the 

point dCt7 which minimizes 

<?23<i(da2,da3,da4) + 0123(02,03)- 

Note that the second term is already stored in memory. Again call the minimizing 

point o?' 03.04) and the associated cost 0234(03,04), and so on until the best dae 

is found for every pair of daT,dQa with the updated cost function 

C678(OT.O8) = ®e78(da,.,da7,da8) + c567(a6,o7). 

The optimal pair 07, Og is chosen, a% is taken to be the already stored 06(07,03), for 

05 take üö(Qg, 07) and so on, until the entire optimal match a\,..., o§ is recovered. 

In abstract terms the graph shown in figure 1 is simply a second order Markov 

graph. This is not always the case. In Amit and Kong (1993) more complex graphs 

were required. Even in the present context replacing the edge between vertices 3 

and 5 to an edge between vertices 3 and 6 yields comparable results, however the 

graph is no longer second order Markov. The match obtained for the candidate 

points shown in the left panel of figure 2 is shown in figure 3.   For vertex 8, the 
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The match to the candidates in the left panel of figure 2 

FIGURE 3. 

algorithm prefered a candidate slightly to the left of the correct one. so not all is 

perfect. We address this issue in the discussion section. The match obtained for 

the candidate points shown on the right panel of figure 2 is shown in the left panel 

of figure 4 together with the match for another brain scan displayed on the right. 

In figure 5 the automatic identification of anatomies obtained from the graph 

match is displayed. 

Dynamic programming has been used in image analysis in a variety of contexts 

such as road tracking (Barzohar and Cooper (1993)) , stereo (Ohta and Kanade 

(1985)), and artery tracking (Petrocelli et al. (1992)). All these settings are one 

dimensional in nature, and the constraints enforced by the underlying graph are 

all local. To our knowledge this is the first attempt to incorporate the efficient 

computational tool of dynamic programming in an inherently two dimensional and 

non-local imaging problem. 
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Matches for two different images, with candidates obtained with the .8 threshhold. 

FIGURE 4. 

Decomposability imposes certain limitations on the graph, and may limit the 

geometric and topological information it contains. In Amit and Kong (1993) this is 

addressed by starting from a non-decomposable graph which contains the desired 

information, splitting it into decomposable subgraphs with certain points in com- 

mon. An optimal match is found using the first graph. When the optimization 

procedure begins for the second subgraph the match for this subset of data points 

is fixed as the match provided by the first subgraph. Now the optimal match is 

found for the remaining vertices of the second subgraph. In the problem presented 

here one decomposable graph was sufficient to obtain the matches. 
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Automatic identification of anatomies in the two images. 

FIGURE 5. 

The cost functions 

The cost function <p has the form 

<f>ijk{dai,daj,dQk) = 

+ 

log (l(dai,dak)/l(dai,da.)) - log (/(u,-,^)//^,-,^)) 

log {l(daj,dQk )/l(da.,da.))  - log (l(Vj, Vk)/l(vj, Vi)) 

los(Kdak,dai)/l(dak,dQi))-\og(l(vk,Vj)/l(vk,Vi)) 

where / denotes the Euclidean distance between between two points. In other words 

the sum of the square of the difference of the log ratios of the lengths of each 

pair of edges between the candidate triangle dQi,daj, dak and the template triangle 

Vi,Vj,vk. In addition a hard constraint was imposed which did not allow an angle 

to change by more than 7r/4. 

Note that these cost functions are completely scale and rotation invariant. On 
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the other hand the local operators although robust to large changes in scale are 

robust to small changes in rotation. In figure 6 we show a successful match to a 

rotated version (ir/8) of the brain scan. Similar results were found for the other 

images, within a range of (--/8.7r/8). 

YZZ/y?'*"      '*'/' " 

A match obtained for an image rotated by TT/8. 

FIGURE 6. 

At TT/4 the algorithm failed, the operators were completely missing the correct 

points. Xote that a match of the graph provides the orientation of the object as 

a side benefit. This partial rotation invariance for a certain range of angles in the 

neighborhood of zero, can yield a fully rotation invariant algorithm. In the present 

context the image would be rotated at 0, TT/4, 7T/2, ... and for each such angle a 

match would be obtained. The angle with a match of minimal cost would be used 

to identify the correct match and the correct orientation. 
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Computation 

The landmarks candidates are identified in the data through some routines 

operated through MATLAB. and take 10-15 seconds on a SUN SPARC 10. The 

software for obtaining the optimal match is written in C. and also takes 10-15 

seconds on the same machine with approximately 400 candidates all together for 

all landmarks, (about 50 per landmark). The software is available upon request. 

§3   Discussion 

The strength of this algorithm is its computational efficiency and the absence 

of any need to initialize the matching algorithm or the optimization procedure. This 

is one of the drawbacks of many relaxation techniques. If the template or model is 

not initially set nearby the correct location the relaxation algorithm may end up in 

completely erroneous solutions. This is for example the problem with the dedicated 

template models of Yuille et. al. (1989), or in Cootes and Taylor (1992b), as well 

as for the elastic matching models mentioned above. 

The methodology presented here is new and many question remain open. At 

the moment the masks for the local operators are automatically obtained once the 

landmarks are pointed out by the user in a chosen template image. How should the 

thresholds be determined, should there be a score associated with each candidate 

according to some criterion? Such scores could be estimated using training images 

together with some statistic of the pixel configuration in the neighborhood of the 

landmark. This may help resolve local mismatches as in figure 3. How would 

other types of the many local operators proposed in the computer vision literature 

perform in conjunction with the graph models? Could different operators be used 

at different image resolutions to obtain matching at various levels of detail? 
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There remains the interesting question of how to automate the creation of the 

graph. It is hard to imagine a fully automated mechanism, because in many cases 

decomposable graphs will be insufficient. It is then necessary to iterate between de- 

composaDie subgraphs. However automatic generation of trial decomposable graphs 

with certain constraints or conditions should be possible to implement, thus aiding 

the user in developing the full graph to be used in the algorithm. 

Finally the present optimization algorithm only identifies the best match. Find- 

ing the best k matches should make the procedure more robust, and is still feasible 

in polynomial time. An interesting problem would be how to chose from among 

these k best matches. 

Another interesting issue is which image to use to generate the model. Can 

the model be improved as new images come in and are matched? For example 

certain parameters of the cost function could be updated to reflect the individual 

distributions of the triangles in the graph. Even the 'mean" triangle provided by 

the initial graph model may change. 
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